
PHYSICAL REVIEW E FEBRUARY 1999VOLUME 59, NUMBER 2
Monte Carlo simulation of a lyotropic first-order isotropic-nematic phase transition
in a lattice polymer model

H. Weber, W. Paul,* and K. Binder
Institut für Physik, Johannes-Gutenberg-Universita¨t, Staudingerweg 7, D-55099 Mainz, Germany

~Received 17 June 1998!

We present a Monte Carlo simulation of the bond-fluctuation lattice model, using a Hamiltonian which
introduces a change in the conformational statistics of the polymer chains from Gaussian behavior at high
temperatures to rigid rod behavior at low temperatures. We do not introduce any attractive interaction between
the chains. Upon cooling, the aspect ratio of the chains increases above the critical value for the density
employed in the simulation, and we observe an entropically driven phase transition into a nematic phase. We
examine this transition quantitatively by a careful finite size scaling study using an optimized cumulant
intersection method, and show that the transition is of first order.@S1063-651X~99!12302-X#

PACS number~s!: 61.25.Hq, 61.20.Ja, 61.30.2v, 64.70.Md
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I. INTRODUCTION

Changing the stiffness and concentration of semiflexi
polymers in solution can introduce a rich liquid crystallin
phase behavior@1–4#. Understanding and predicting th
phase behavior in terms of the intramolecular and interm
lecular interactions of the chains is at the same time of h
technological importance and a large fundamental challen
If the polymer chains, or, in the limit of infinite stiffness, th
rigid rodlike molecules, interact through orientatio
dependent attractive interactions which favor a parallel ali
ment of the molecules@5#, it is easy to visualize a transitio
from an isotropic solution at low concentrations to a nem
cally ordered solution at high concentrations. The molecu
can lower their interaction energy upon ordering into t
nematic phase, and we obtain a so-called thermotropic n
atic phase transition@6,4#. Since the pioneering work of On
sager@7#, we know, however, that an isotropic-nematic tra
sition can also occur if there are only repulsive exclud
volume interactions between the molecules. In this case
transition is completely driven by the behavior of the e
tropy. The molecules lose orientational entropy upon ord
ing, but they gain translational entropy and this drives
phase transition. The theory of this so-called lyotropic ne
atic phase transition, for instance, predicts that the value
the orientational order parameter at the transition should
pend on the density in contrast to the purely thermotro
case. This has also been seen experimentally@8,9#, which
shows that excluded volume effects also play a role in
phase transition in real systems.

All theoretical treatments of the isotropic-nematic tran
tion @10–14# of continuum models for semiflexible polyme
predict a first-order phase transition. This transition has b
analyzed by computer simulations@15,16#, and in Ref.@16# it
was shown that the analytical calculations not only provid
qualitative description of the coexistence densities of the
tropic and nematic phase but are also able to predict
transition densities to within about 20%.

For lattice polymer models the situation is different. T
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theoretical analysis started with the work of Flory@17#,
whose theory predicted a first-order isotropic-nematic ph
transition when the flexibility of the lattice polymer chain
decreases below a certain threshold. It could, however
shown that Flory’s approximation of the configurational e
tropy of the polymer chains is too drastic@18–21#, and that
in an improved treatment the transition is removed to infin
stiffness. This agrees with the findings of lattice model sim
lations of the isotropic-nematic transition@22,23#, which
showed no phase transition but the occurrence of nematic
ordered domains of a size corresponding to fully stretch
chains. Only through an introduction of aligning interactio
between the chains could a phase transition be induced
these observations are completely at odds, however,
exactly solvable very simplified lattice polymer mode
@24,25# which show a second-order phase transition into
nematic phase. From this comparison it is clear that the
currence and type of the isotropic-nematic phase transitio
lattice polymer models depend strongly on the details of
model~and the underlying lattice!, which influence the subtle
interplay between translational and orientational entropy t
determines this phase transition.

In the remainder of this paper we will show that the bon
fluctuation lattice model with a suitably chosen Hamiltonia
that leads to an increasing stiffness of the chains upon c
ing but does not contain any attractive interactions betw
the chains, indeed possesses a first-order phase trans
from an isotropic to a nematic phase. A typical snapsho
the order in the nematic phase is shown in Fig. 1. In Sec
we will define the model and the simulation technique. S
tion III will present some theoretial background on the fin
size scaling analysis of a nematic phase transition. In Sec
we will discuss our results and present some conclusion

II. MODEL

In this study we use the three-dimensional version of
bond-fluctuation lattice model, which has been discusse
detail in the literature@26,27#. Each monomer occupies th
eight corners of a unit cube on the simple cubic lattice, i
its size isV523 in units of the lattice constant. The bond
connecting the monomers are generated out of the seB
2168 ©1999 The American Physical Society
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5$(2,0,0),(2,1,0),(2,1,1),(2,2,1),(3,0,0),(3,1,1)% by all
possible lattice symmetry operations. The shortest b
length puts two momoners adjacent to each other on
lattice. Two monomers whose centers are connected by
largest bond length are still so close that no other mono
can pass between them~chain connectivity!. Temperature is
introduced by the Hamiltonian

H~$b%,$u%!5(
$b%

eb~b2b0!2

1(
$b%

eu cos~u!„11c0 cos~u0!…, ~1!

which contains only intramolecular degrees of freedom.$b%
denotes the set of all bond lengths, and$u% denotes the set o
all bond angles.eb51 defines the energy scale of the mod
~temperatures will henceforth be given in units ofeb), and
we chooseeu50.67, b050.86, andc050.03 @28#. The
Hamiltonian therefore favors short bond lengths (bmin52)
and stretched bond angles (u5p). At high temperatures
these chains are known to conform to the Gaussian stati
of polymer chains in the melt@26,27#, and the ground state o
each chain is a rigid rod with all bonds collinear and of ty
~2,0,0!. The contour length of the chains in the ground st
is 2N lattice units, and its width is that of a monomer, i.e
d52. The variation of the chain stiffness as a function
temperature can be seen in Fig. 2, where we show the c
acteristic ratio of the chains of lengthN520:

CN5
^R2&

~N21!^ l 2&
, ~2!

where^R2& is the mean squared end-to-end distance of
chains,N is the degree of polymerization, and^ l 2& is the
mean squared bond length. The characteristic ratio stro
increases toward its ground state value ofCN519 for tem-
peratures belowT50.3, giving us a first indication where t
expect the nematic ordering phenomenon.

FIG. 1. Configuration snapshot for a system of chains of len
N520 at a temperatureT50.219 in the nematic phase.
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The intermolecular interaction in the model is pure e
cluded volume interaction, realized in the lattice model
prohibiting double occupancy of lattice sites. This model h
been used previously in studies of the free volume perc
tion transition in polymer matrices@29# and the excess sca
tering induced by intramolecular ordering of these cha
upon cooling@30#. We will discuss simulations performed a
a constant polymer volume fraction ofF50.5 and for chains
of lengthN520, with some results also presented for cha
of lengthN510 for comparison.

At low temperatures a Monte Carlo simulation using M
tropolis rates exhibits an exponentially decreasing acc
tance rate, and we are addressing an ordering phenom
with an algebraic~second order! or rounded algebraic~first
order! divergence of relaxation times near the transition te
perature. Furthermore, we have to simulate rather large
tems to allow for the occurrence of differently oriented ne
atic domains and to be able to perform a finite size sca
study using the subensemble method@31#. In this study the
largest linear dimension of the system wasL5130. One im-
portant technical advantage of the bond-fluctuation mode
this volume fraction is the ability of the slithering snak
reptation algorithm~see Refs.@32,33# for a version of this
algorithm that allows for further dynamic simulations using
random hopping algorithm@27#! to equilibrate the simulated
system through the whole transition region. Despite the f
that our system sizeL5130 means that we have almost 1
million monomers in the system, times of order 107 Monte
Carlo steps~MCS! per monomer can be reached. To che
equilibration and exclude the occurrence of frozen-in me
stable states, we performed stepwise cooling from the m
for the temperaturesT50.367, 0.282, 0.263, and 0.251, an
stepwise heating from a columnar crystal forT50.219,
0.238, 0.251, and 0.263. For the two temperatures wh
completely different starting configurations were used, Fig
shows that we were well able to equilibrate the structures
that there are no discernible effects of the thermal history
the sample. Comparing the behavior of the mean squared
to end distance of the chains in Fig. 3~a! to the order param-
eter of the system~which will be defined in Sec. III! in Fig.

h

FIG. 2. Chain stiffness as measured by the characteristic rati
a function of temperature for the chains of lengthN520. The defi-
nition is given in the text. We observe a sharp increase in stiffn
for temperaturesT,0.3.
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3~b!, we furthermore note that the latter needs about an o
of magnitude more simulation time for equilibration. Figu
3~b! also indicates that the two temperatures shown lie in
nematic region of the phase diagram, which will be dem
strated in Sec. IV.

III. HOW TO ANALYZE
THE ISOTROPIC-NEMATIC TRANSITION

In the nematic phase the orientational isotropy of the s
tem is broken, and the molecules are preferentially orien
along some direction called the nematic directorn̂. The glo-
bal nematic order parameter can be defined as the exp
tion value of the second Legendre polynomial of the inn
product of a unit vectorûi characterizing the molecular or
entation and the nematic director:

S5
1

2
„3^~ ûi•n̂!2&21…. ~3!

FIG. 3. ~a! Equilibration time series for the mean squared en
to-end vector for two different simulation temperaturesTend. For
both temperatures time series starting from a columnar crysta
lower temperature and a melt configuration at higher tempera
are shown. Both time series reach the same equilibrium valu
about 106 Monte Carlo time units.~b! Same as~a! for the nematic
order parameter. Here the equilibration time is about 107 Monte
Carlo time units.
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e
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The unit vectorûi is taken along the symmetry axes of
molecule@34–37# ~not available here!, the principal axes of
inertia of a polymer@15#, or the individual polymer segment
@16#, which is computationally more efficient in the polyme
case. In a simulation, however, the directorn̂(t) at time t is
not ana priori known quantity. One therefore proceeds
computing the Saupe tensor@38#,

Qab5
1

N(
i 51

N S 3

2
uiauib2

1

2
dabD . ~4!

The sum runs over all bonds in the system.Q is a symmetric
traceless tensor with the inversion symmetry of the nem
phase. The eigenvector for the largest of the three real eig
values^l1& is the nematic director. The nematic phase
rotationally invariant around the director, so in this phase
have

1
2 ^l1&52^l0&52^l2&, ~5!

where^l0& denotes the middle and̂l2& the smallest eigen-
value. In the isotropic phase we have

^l1&5^l0&5^l2&50. ~6!

Defining S5^l1& provides an equivalent way to calcula
the nematic order parameter@36# which is generally used in
computer simulations@37,39–41#.

In a computer simulation the signature of a phase tra
tion is always distorted by effects of the finite simulatio
volume. The magnitude of these effects depends on the r
of the intrinsic length scale of the phenomenon~the correla-
tion lengthj) to the linear system sizeL. This dependence
has been used in the phenomenological finite size sca
theory @31,42#, where the singular part of the free energy
written as a function of thermodynamic parameters such
the temperature and the ratioL/j. For the moments of the
order parameter this leads to the well known@31,42# predic-
tions at a second-order phase transition

^xk&~T,L !5Lkb/nX̃S T,
L

j D . ~7!

Hereb is the order parameter critical exponent,n character-
izes the divergence of the correlation length at the criti
point, j}(T2Tc)

2n, andX̃ is a scaling function. It follows
from Eq.~7! that exactly atTc whereL/j50, certain suitably
chosen ratios of the order parameter momentsg2k
5^x2k&/^xk&2 are independent of the system size. The cor
sponding curves for differentL as a function of temperatur
thus have a common intersection point atTc . The most
popular one of these ratios is the fourth-order cumulant

g45
^x4&

^x2&2
. ~8!

For reasons of statistical accuracy it is preferable, howe
to work with the second-order cumulant@43#

g25
^x2&

^x&2
, ~9!
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which is less susceptible to effects of statistical inaccurac
the tails of the numerically generated order parameter di
bution.

The cumulant intersection method can also be app
to first-order phase transitions@44–47#. Since the predictions
for this case are different from those for second-order tr
sitions, the method can serve as a tool to determine the o
of the transition. For a first-order phase transition the p
nomenological predictions are as follows@47#.

~i! The curves ofg4(T) for neighboring values ofL inter-
sect close to the transition temperatureTc , which means that
the sequence of curves as a function ofL at fixedT reverses
at Tc . The intersection pointsTcr(L) converge to the critica
temperature forL→`,

iTcr~L !2Tci}L22d, ~10!

whered is the dimensionality of the system.
~ii ! For smallL the cumulantg4 is a monotonically in-

creasing function ofT. For sufficiently largeL, g4 has a
maximum in the disordered phase whose height scales a
volume and whose distance to the critical temperature sc
as the inverse volume.

Quantitative predictions for the behavior of the secon
order cumulant have not been derived so far, but qua
tively we expect a similar behavior. We will discuss o
results for the second and fourth order cumulants in Sec.

IV. RESULTS AND DISCUSSION

We have already seen qualitatively in Fig. 1 that o
model exhibits a nematic ordering phenomenon for ch
length N520 at low temperatures. This can be seen v
clearly when we look at the nematic order parameterS as a
function of temperature in Fig. 4~a!. This figure shows the
nematic order parameter for several subsystem sizes o
simulation box of sizeL5130. We see a strong increase
the nematic order for temperatures belowT50.27, and the
value of the order parameter becomes independent of
subsystem size at low temperatures. For higher tempera
any residual nematic order is clearly a finite size effect,
can be seen from the vanishing of the order parameter
increasing subsystem size. In contrast, we cannot obs
such a phenomenon for the chain lengthN510 in the same
temperature interval@see Fig. 4~b!#. From this we cannot
however, exclude a transition forN510 at considerably
lower temperatures than those analyzed here. Due to
glassy freezing of the model at low temperatures, this pr
lem is difficult to study.

Let us now turn to the determination of the phase tran
tion temperature and the order of the transition forN520.
Figure 5~a! shows the fourth-order cumulant of the large
eigenvalue of the Saupe tensor as a function of tempera
for different subsystem sizes, and Fig. 5~b! shows its second
order cumulant. Qualitatively we observe the predictions d
cussed in Sec. III. For smallL the cumulants are monotonica
increasing functions of temperature, whereas for largerL we
see a peak occurring in the disordered phase. The arrow
the figures indicate intersection points of curves for nei
boring L, and they appear to converge to a limiting val
aroundT50.27. There is, however, relatively large statistic
in
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scatter in the disordered phase, especially close to the p
position. As expected, the scatter is stronger forg4 than for
g2 , but since the curves bundle up for large system si
even forg2 this scatter prevents a reliable determination
the intersection points of curves for differentL ’s when L
becomes large. This also precludes an accurate extrapol
of the intersection points to the transition point.

The reason for this problem is the bundling up of t
curves for differentL ’s in the disordered regime, which in
turn stems from the finite size scaling behavior of the diff
ent momentŝl1

n & of the order parameter. Figure 6 shows
comparison of the system size dependence of the larges
the middle eigenvalue of the Saupe tensor atT50.282 in the
disordered phase. For the moments of the largest eigenv
we observe a dependence approximately given by^l1

n &
}L2nd/2, makingg2

1 andg4
1 practically independent of the

system size for large systems in the disordered phase. Fo
middle eigenvalue, however, the behavior is different. H
we find approximately^l0

n&}L2nd/2 for n>2 but ^l0&
}L23. For a model system of uniaxial molecules this beha
ior was analytically predicted in Ref.@35#. As a consequence
the second-order cumulant of the middle eigenvalue sho

FIG. 4. ~a! Nematic order parameter as a function of tempe
ture for a melt of chains of lengthN520. The different curves are
for different subsystem sizes given in the legend.~b! Same as~a!
for N510.
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FIG. 5. ~a! Fourth-order cumulant of the largest eigenvalue
the Saupe tensor as a function of temperature. The different cu
are for the subsystem sizes given in the legend. The arrows ind
intersection points of curves for neighboring subsystem sizes.~b!
Same as~a! for the second-order cumulant of the largest eigenva
of the Saupe tensor.

FIG. 6. System size dependence of the largest and the mi
eigenvalue of the Saupe tensor at temperatureT50.282 in the dis-
ordered phase. Note that^l0& and ^l0

2& show the same slope.
scale asg2
0}L3 in the disordered phase, thereby alleviati

the problem caused by the bundling up of the curves. In F
7 we show that this behavior indeed can be seen. Here
curves are sufficiently spread out so that it is possible w
the accuracy obtainable in the simulation to determine
cumulant intersection points with sufficient precision. It m
seem that the smallest subsystem linear dimensionL in-
cluded in our analysis~Figs. 5 and 7!, L54, is ridiculously
small. However, an analysis of the orientational correlat
function has revealed@32# a rather small value of the orien
tational correlation lengthj in the transition region,j'3
lattice spacings. Thus our choice satisfiesL.j. The result-
ing points are shown in Fig. 8 which presents the system
scaling of the cumulant intersection temperatures. The
curve is a fit with

Tcr5Tc2aL23. ~11!

f
es
te

e

le

FIG. 7. Second-order cumulant of the middle eigenvalue of
Saupe tensor as a function of temperature. The different curves
for the subsystem sizes given in the legend. Note that the curve
different subsystem size now show a marked system size de
dence in the disordered phase.

FIG. 8. Extrapolation to an infinite system size for the inters
tion temperatures of the second order cumulants in Fig. 7.
extrapolated first-order phase transition temperature isTc50.271.
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TheL23 scaling would be expected for any first-order pha
transition on general grounds@46,47#. From the fit we deter-
mined a transition temperatureTc50.271 compatible with
our prior estimates and a prefactora53.11.

In this way we are able to establish a first-order ph
transition from a high temperature isotropic phase to the
temperature nematic phase in our model system of chain
length N520. The transition is generated by the conform
tional changes in the chains which are forced toward
rigid rod ground state as the temperature decreases. The
sition itself is entropy driven. The chains lose orientation
entropy upon ordering, but they gain translational entro
Since the Hamiltonian favors bonds of the type~2,0,0! in the
rigid rod ground state there are, however, only three poss
orientations each chain can take in its ground state on
simple cubic lattice. This small orientational entropy ce
tainly increases the ordering tendency compared to a c
tinuum simulation.

In comparison with earlier lattice simulations of differe
models, we can only speculate on why they failed to disp
an isotropic-nematic transition. There is always a comp
tion between this transition and a glass transition in th
simulations, when one increases the density at a fixed c
stiffness or the chain stiffness a fixed density. When the d
sity ~stiffness! of the model at the isotropic-nematic trans
tion is larger than the corresponding glass transition va
the phase transition is masked by the glassy freezing an
not observable in the simulation. The same Flory model@48#
used for the mean-field treatment of the isotropic-nem
transition is also the basis of the Gibbs-DiMarzio theory@49#
of the polymer glass transition. Also in our simulation, t
self-diffusivity of chains at temperatures 0.35,T,0.6 is
compatible with a glassy freezing aroundT50.15 @32#.
However, even at the simulated density off50.5 the
isotropic-nematic transition already occurs at a higher te
perature~smaller stiffness!, and is therefore observable in th
simulation.

To gain further insight into the chain length dependen
of this transition, we can try to interpret it in terms of th
Onsager theory of the entropy driven isotropic-nematic tr
sition @7,2# or the lattice model treatment of this transition b
Flory @48,2#. For rigid rodlike polymers of lengthK and
diameterd, both theories predict the limiting volume fractio
of rods for the isotropic one-phase region to be

f* 5const
d

K
. ~12!

The value of the constant in the above equation is 3.29
the numerical solution of the Onsager theory and 7.89 for
numerical solution of Flory’s theory. In order to apply th
equation to our simulation we equate the parameterd with
the thickness of our chains (d52), and the length of the rod
with the square root of the mean squared end-to-end dist
(K5Re5A^Re

2&). The latter relation is an exact identity i
the ground state, and serves as a definition of the length
T.0. From the simulation we determinedF* 50.5 for the
e
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temperatureT50.271. At this temperature we find̂Re
2&(T

50.271)5440.62. This gives an empirical value of con
55.25 for the constant in Eq.~12!, which lies between the
values for the continuum and the simple lattice model t
Flory studied. We can now plot an approximate transiti
line in the (f,Re) plane, which is given by

Re5
10.5

f
. ~13!

The resulting phase diagram is shown in Fig. 9 for 0.2,f
,1, where the full line denotes the stability limitf* of the
isotropic phase. For fixed volume fraction of the simulati
we expect a phase separation into an isotropic phase w
density given by the curve, and a nematic phase at a hig
density as soon asRe becomes larger than 10.5/f. Also in-
cluded are transition points for chain lengthsN56 –18 for
temperatureT50, where the length of the chains in the
rigid rod ground state isRe52N, and the transition density
is 5.25/N. From this diagram we conclude that at a volum
fraction in the simulation off50.5 all chains of lengthN
.10 should show an isotropic-nematic phase transition
some temperatureT.0. The chains of lengthN510 for
which the order parameter was shown in Fig. 4~b! are there-
fore not expected to order at the simulation density.
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FIG. 9. Mean-field phase diagram according to the Onsa
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transition to the nematic phase.
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